算法之美:你可能想不到的归并排序的神奇应用

又是一道有意思的题目,Count of Range Sum。(PS:leetcode 我已经做了 190 道,欢迎围观全部题解 https://github.com/hanzichi/leetcode

题意非常简单,给一个数组,如果该数组的一个子数组,元素之和大于等于给定的一个参数值(lower),小于等于一个给定的参数值(upper),那么这为一组解,求总共有几组解。

一个非常容易想到的解法是两层 for 循环遍历子数组首尾,加起来判断,时间复杂度 O(n^2)。

交了下 TLE 了,看了下测试数据,数组长度为 9000,复杂度达到了 8100w,还是蛮大的。其实题目中也说了: A naive algorithm of O(n2) is trivial. You MUST do better than that.

如何将复杂度降到 log 级别?想到了二分的方法。可以将子数组和转换成两个前缀数组和的差,定义数组 sum, sum[i] 表示数组前 i 个元素的和,特殊的, sum[0]=0,那么元素 i 到元素 j 的和可以表示为 sum[j]-sum[i-1]。我们枚举 0 到 nums.length,比如枚举到了 sum[j],我们需要求满足条件的 i(i

解法似乎呼之而出,用二分维护有序数组(用 splice 插入),同时用二分找到临界的数据,一次迭代需要多次二分。二分查找相关可以看我以前的文章 二分查找大集合(妈妈再也不用担心我的二分查找了)

注意下二分的边界,代码很容易写出来。

很不幸,还是 TLE 了,究其原因,我觉得应该是调用了 n 次 splice 方法。 感觉维护一棵二叉搜索树应该是可行的,无奈不会手写二叉搜索树 = =

那么可行的解法是什么呢?答案是归并排序的 “另类使用”。这里不讲归并排序,关于归并排序,可见我以前的文章

言归正传,首先预处理数组的前缀和,保存到数组 sum 中。然后用归并排序对数组 sum 进行排序,归并排序中有一步调用 merge 函数,将有序的左数组和右数组进行合并,而这时的右数组中的任一元素在 sum 数组中的位置正是在左数组任一元素之后!利用这,我们可以在 merge 前,对 left 数组和 right 数组满足条件的元素进行求解。

这个函数我定义为 getAns:

做完一次归并排序,每次 left 和 right 数组合并前进行判断,就将所有 sum[j]-sum[i](j>i) 的情况进行了判断,简直神奇!

完整代码参考我的 Github

224ms!Your runtime beats 100.00% of javascript submissions

还是有点小激动

打赏支持我写出更多好文章,谢谢!

打赏作者

打赏支持我写出更多好文章,谢谢!

2 3 收藏 1 评论

关于作者:韩子迟

a JavaScript beginner 个人主页 · 我的文章 · 9 ·    

相关文章

可能感兴趣的话题



直接登录
最新评论
跳到底部
返回顶部